

Solar PV Overview

(TEMA: Virtual Energy Basics 101)

Presented by: Saleem Khan, P.E. and Joey Pham

email: Saleem@teesi.com

(Texas Energy Engineering Services Inc.)

<u>www.TEESI.com</u>

(512) 328-2533

November 30, 2022

Overview

- > Presentation originally part of the SECO webinars series (2022)
 - > SECO Technical Assistance
- ➤ Solar PV Payback vs Typical Measures
- ➤ PV System Components
- ➤ Solar Project Feasibility Process Overview
 - > Facility Selection
 - Identifying Potential
 - Site Visits & Measurements
 - Selecting Components and System Sizing
 - ➤ PV Watts Modeling Tool
 - Project Cost & Savings
 - Incentives and Funding Options
 - ➤ Calculating Payback
- ➤ Case Study
- Construction Considerations
- ➤ Q & A Session

SECO Technical Assistance Programs

- Engineering Services
 - > Schools and Local Gov't Technical Assistance
 - Solar PV feasibility evaluation
 - Energy efficiency design guide for new construction and renovations
 - Renewable energy application

Eligibility

Available at <u>no cost</u> to the following entities:

- Municipal and County Governments (Cities & Counties)
- Independent School Districts
- County Hospitals
- Port Authorities
- Major Airports
- Public Water Authorities
- and Municipally-Owned Utilities

How do I participate?

- ➤ Visit SECO website & fill out Service Request Form
 - For Local Government
 Entities:
 https://comptroller.texas.gov/programs/seco/programs/local/pea.php
 - For School Districts:
 https://comptroller.texas.gov/programs/seco/programs/seco/programs/seco/programs/seco/programs/seco/programs/seco/pea.php
 - Contact LeShawn Manus or John Kyere if you have any questions

Solar Compared to Typical UCRMs

UCRM	Payback Range (Yrs)
T8 Linear Fluorescent to LED	4 - 8
Exterior LED Retrofit	6 - 10
Motion Sensors & Day-lighting Controls	2 - 8
Solar Window Film	5 - 15
Existing Building HVAC Retro-Commissioning	1 - 6
Water Conservation	4 - 9
Solar Thermal Pool Heating	12 - 20
Cooling Tower Replacement	8 - 15
Thermal Storage	12 - 25
HVAC Unit Replacement	15 - 25
Chiller Replacement	15 - 25
Boiler Replacement	15 - 25
Solar PV Installation	12 - 20

PV System Components

Typical Solar Array System

 $(source: National\ Renewable\ Energy\ Laboratory,\ https://www.nrel.gov/docs/fy10osti/46078.pdf)$

6 of 30

PV Module (Panel) Types

- ➤ Module Type
 - > Cell material
 - Monocrystalline, polycrystalline, thin-film
 - Nominal efficiency
 - ➤ Module Cover
- ➤ Temperature Coefficient of Power
 - ➤ 25°C (77 °F) standard test condition for nominal wattage
 - > -0.2% / °C to -0.5% / °C

(source: Clean Energy Reviews, https://www.cleanenergyreviews.info/blog/most-efficient-solar-panels)

- ➤ Advantages & Drawbacks
 - ➤ Cost vs Performance & Efficiency

Examples of Racking Systems

Ballasted

Static / Fixed Mount

Anchored

Tracking Mount

Ballasted Racking Systems

- ➤ Static system using ballast (weighted objects to secure)
- ➤ Flat (leveled) roof
- ➤ Used for wind loading on roofs

Advantages:

- ➤ No roof membrane penetrations
- ➤ Simple system construction
- ➤ PV array components can be easily removed if access to roof is required for repair.

- ➤ Structural limitations due to weight
- May void roof warranty in some cases

Anchored Racking Systems

- Static System using fasteners
- Used for wind loading on roofs
 - ➤ Flat or sloped roof

Advantages:

- ➤ Generally lighter than ballasted design
- ➤ May be used on car ports or similar structures

- ➤ May require roof membrane penetrations
 - ➤ Potential leaks
 - ➤ May void roof warranty

Tracking Type Rack Systems

- Tracks the movement of the sun to maximize electric generation
- ➤ 1-axis, 1-axis with backtracking, and 2-axis

- ➤ System complexity
 - Software, moving parts, motors & actuators
- ➤ High upfront cost
- ➤ Requires more maintenance
 - Fine tuning and calibration required
- > Expensive repair cost

Examples of Inverter Types

Micro inverter

String inverter

Inverters Compared (String Inverter)

Advantages:

- Easy to troubleshoot
- ➤ Lower cost can serve multiple strings of modules

String inverter

- > Series circuit & shading effects
 - Limits entire string to lowest performer
- ➤ Difficult system expansion
- ➤ Shorter lifespan (8-12 years warranty)
- System monitoring limitations
 - No panel level performance data
- ➤ Replacement cost much greater than replacing 1 microinverter

Inverters Compared (Microinverter)

Advantages:

- Parallel circuit
 - Not limited by lowest producing panel
 - ➤ Each panel will produce as much as it can (based on conditions)
 - ➤ More electricity yield
- Flexibility for site conditions
- Longer lifespan (25-year warranty)
- ➤ No single point of failure
 - If one microinverter fails, the rest of the system will continue to generate electricity
- > Ease of system expansion

Drawbacks:

- Overall Cost
 - ➤ More expensive than string inverters
- ➤ Maintenance difficulty
- ➤ "Clipping"
 - Panel output limited to the inverter's output

Micro inverter

source: Solarreviews.com, https://www.solarreviews.com/blog/ pros-and-cons-of-string-inverter-vs-microinverter

Feasibility Overview

1 Facility Selection

2 Identifying Potential

- ➤ Identify available areas for solar array:
 - ➤ Building roof
 - Covered parking structures
 - > Open unshaded areas (fields) adjacent to buildings

- Spot check measurements at the site
- ➤ Use PV generation calculator to estimate annual kWh based on available area and local TMY data.

Site Measurements

- ➤ Area available
- ➤ Tilt Angle
- >Azimuth Angle
- Note obstructions from tall buildings, trees, & shading factors from HVAC equipment, and parapets

Shading from RTU

Potential Roof space for solar installation

General Guidelines for Array Configuration

- Azimuth Clockwise angle from true north
- Ideally, 180° or south facing
- Array facing east or west: 87-90% of "ideal" condition

Annual Power Generation/kWvs Azimuth

Selecting Components and System Sizing

- ➤ PV Modules/ Panels
- ➤ Racking Type
- ➤ Inverter Type
- ➤ Battery/ Storage (optional)
- **→** Sizing Considerations
 - ➤ What application?
 - ➤ Benchmarking
 - ➤ Available area/ structural loading
 - >\$/Winstalled cost

PV Watts Modeling Tool

➤ Developed by National Renewable Energy Laboratory (NREL)

>Free web app

- ➤ Estimate electric generation
 - ➤ User specified system design, configuration, location
 - ➤ Solar and TMY weather data

5 PV Watts Modeling Tool

Required Inputs:

- ➤ DC System Size
- ➤ Module Type Standard, premium, thin-film
- > Array Type Fixed (open rack or roof mount), 1, or 2-axis tracking
- System losses soiling, shading, line losses, degradation, etc.
- > Array Tilt Angle
- > Array Azimuth Angle (orientation)

Module Type Options

PVWatts [®] Module Type	Cell Material	Approximate Nominal Efficiency	Module Cover	Temperature Coefficient of Power
Standard	Crystalline Silicon	15%	Glass	-0.47 %/°C
Premium	Crystalline Silicon	19%	Glass with anti- reflective coating	-0.35 %/°C
Thin Film	Thin film	10%	Glass	-0.20 %/°C

➤ Optional Inputs:

- > DC to AC Size Ratio
- > Inverter efficiency
- Ground coverage ratio (GCR)

PVWatts® Calculator

PVWatts® Calculator

SAVE

Degradation Over Time

- ➤ Usual range observed: 0.2-1.0% / year
- ➤ Average 0.5–0.8% /year*
- ➤ 20% degradation is considered the end of useful life
- Panel will continue to generate power beyond this point.

Estimated solar generation degradation

Incentives and Funding

- ➤ Utility Rebate Programs
- >SECO LoanSTAR
- ➤ Qualified Energy Conservation Bonds (QECB)
- ➤ Energy Efficiency and Conservation Block Grant (EECBG)
- ➤ New Clean Renewable Energy Bonds
- ➤ Power Purchase Agreement (PPA)
- **ESPC** funded
- Advantages and Disadvantages must be evaluated on an individual basis.

PV System Cost/ Payback

- Average Solar PV System Cost \$1,790/kW (rooftop >200-kW)
- Average Solar PV System Size 55 SF/kW
- ➤ Average annual electric output 1,300 kWh per kW
- ➤ Therefore a 200 kW Solar PV System will
 - require 11,000 SF
 - > cost \$358,000
 - produce 260,000 kWh/yr
 - > at \$0.10/kWh will save \$26,000/yr
 - > simple payback of 13.8 years

Table ES-2. Q1 2021 PV and Energy Storage Cost Benchmarks

Cost Benchmarks ^a	PV System			
Residential Systems				
\$2.65/W _{DC} (or \$3.05/W _{AC})	7.15-kW _{DC} rooftop PV			
\$4.26/W _{DC} -\$4.72/W _{DC}	7.15-kW _{DC} rooftop PV with 5 kW _{DC} /12.5 kWh ^b nameplate of storage			
Commercial Systems				
\$1.56/W _{DC} (or \$1.79/W _{AC})	200-kW _{DC} rooftop PV			
\$1.64/W _{DC} (or \$1.88/W _{AC})	500-kW _{DC} ground-mounted PV			
\$1.97/W _{DC} - \$2.06/W _{DC}	1-MW _{DC} ground-mounted PV colocated with 600 kW _{DC} /2.4 MWh _{usable} of storage			

Source: NREL - PV Watts, www.pvwatts.org

U.S. Solar Photovoltaic System and Energy Storage Cost Benchmarks: Q1 2021

Assumed PV System located in Austin, TX.

No incentive, rebate, tax credit or utility rate escalation assumed.

Case Study: Austin ISD (2019 SECO TA Rpt.)

Facility	PV Array Size (kW-DC)	Cost (\$)	Year 1 Generation (kWh)	Avg. Generation ¹ (kWh)	Payback (Yrs)	Payback w/PBI (Yrs)
Anderson HS	522	\$955,700	734,500	668,100	19.4	14.8
Crockett HS	371	\$716,000	522,400	475,200	20.5	15.9
Eastside HS	394	\$754,000	554,400	504,300	20.4	15.7
LBJ HS	739	\$1,249,600	1,040,600	946,600	17.8	13.3
Travis HS	398	\$761,400	560,700	510,000	20.3	15.7
Ann Richards MS	605	\$1,075,200	851,400	774,500	18.8	14.2
Blazier Relief MS	147	\$316,700	207,200	188,500	23.1	18.4
Fulmore MS	297	\$587,700	418,400	380,600	21.1	16.4
Lamar MS	117	\$260,000	160,000	145,500	24.7	19.9
Mendez MS	131	\$286,000	178,100	162,000	24.4	19.6
Murchison MS	226	\$457,200	317,600	288,900	21.7	17.0
Small MS	119	\$263,200	155,900	141,800	25.7	20.9
Webb MS	345	\$671,200	471,300	428,700	21.4	16.7
Baranoff ES	185	\$382,900	260,000	236,500	22.2	17.5
Brown ES	97	\$218,600	136,200	123,900	24.4	19.6
Cook ES	194	\$398,900	273,600	248,900	22.0	17.3
Cowan ES	119	\$263,000	160,900	146,400	24.8	20.1
Doss ES	200	\$407,700	281,200	255,800	21.8	17.2
Govalle ES	204	\$416,400	287,600	261,600	21.8	17.1
Guerrero-Thompson ES	168	\$354,300	236,600	215,200	22.6	17.9
Houston ES	201	\$409,300	282,400	256,900	21.8	17.1
Menchaca	315	\$618,700	443,100	403,100	21.0	16.3
New SW ES	199	\$406,400	280,000	254,700	21.9	17.2
Odom ES	181	\$376,900	255,000	232,000	22.3	17.6
Palm ES	98	\$221,300	128,800	117,200	26.2	21.4
Pillow ES	135	\$294,700	190,600	173,400	23.4	18.7
Reilly ES	89	\$202,500	125,300	114,000	24.6	19.8
Ridgetop ES	63	\$147,500	89,200	81,100	25.2	20.4
Walnut Creek ES	202	\$411,100	283,700	258,100	21.8	17.1
Wooten ES	65	\$152,100	92,000	83,700	25.2	20.4
PROJECT TOTAL SUMMARY	7,128 Total kW-DC	\$14,036,200 Est. Cost	9,978,700 kWh Total Generation	9,077,200 kWh Avg. Generation	22.4 Year Payback	17.7 Year Payback

¹⁾ Average generation was taken over a 25 year lifetime of PV arrays.

- (1) Based on Year 1 generation of identified Solar PV potential
- (2) Based on revenue from average PV generation over 25-year lifetime of PV arrays (not including rebates)

Based on estimated potential GHG reduction and reference calculations found http://www.epa.gov/cleanenergy/energy-resources/refs.html

Design & Construction Considerations

- ➤ Permitting and inspection
- **≻**Structural
 - ➤ "Dead load"
 - "Live loads"
 - ➤ Wind Loading
 - > Seismic forces
 - Snow accumulation
- ➤ Roof warranties
- Fire Classification/ Rating
- Maintenance & monitoring

- **>** Warranties
 - > System, components & labor
- > Available area
 - ➤ Module spacing
 - ➤ Servicing pathways
- ➤ Roof height
- Monitoring systems and software
- ➤ NEC (Electrical Code)
- ➤ Rapid shutdown capabilities

Questions?

Saleem Khan, P.E., CxA
TEESI Engineering
(512) 328-2533 ext:208
saleem@teesi.com

